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ABSTRACT

Suppose (X, S) is a S- metric space and P, Q and T are selfmaps of X. If these three maps and the space X satisfy
certain conditions, we shall prove that they have a unique common fixed point in this paper. As a consequence we
deduce a common fixed point theorem for three selfmaps of a complete S- metric space. Further, we show that a
common fixed point theorem for three selfmaps of a metric space proved by S. L. Singh and S. P. Singh ([9]) follows
as a particular case of the theorem.
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1. INTRODUCTION AND PRELIMINARIES

It is well known that in applied mathematics, many of the most important nonlinear problems can be reduced to
solving a given equation. This equation can be reformulated as finding the fixed point or zero of an operator,
highlighting the importance of fixed point theory as a key part of nonlinear functional analysis. Fixed point theory
has found wide applications in various disciplines, including nonlinear partial differential equations, nonlinear integral
equations, control theory, optimization theory, economics, and engineering.

On the other hand, some authors are interested and have tried to give generalizations of metric spaces in different
ways. In 1963 Gahler [6] gave the concepts of 2- metric space further in 1992 Dhage [2] modified the concept of 2-
metric space and introduced the concepts of D-metric space also proved fixed point theorems for selfmaps of such
spaces. Later researchers have made a significant contribution to fixed point of D- metric spaces in [1], [3], and [4].
Unfortunately almost all the fixed point theorems proved on D-metric spaces are not valid in view of papers [6], [7]
and [8]. Sedghi et al. [10] modified the concepts of D- metric space and introduced the concepts of D*- metric space
also proved a common fixed point theorems in D*- metric space.

Recently, Sedghi et al [11] introduced the concept of S- metric space which is different from other space and
proved fixed point theorems in S-metric space. They also gives some examples of S- metric spaces which shows that
S- metric space is different from other spaces. In fact they give following concepts of S- metric space.
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Definition 1.1([11]): Let X be a non-empty set. An S-metric space on X is a function
S: X3 — [0, w0) that satisfies the following conditions, for each x, y, z,a € X
(1) S(x,y,z)>0
(ii) S(x,y,z)=0ifand only if x =y =z.
(iii) S(x,v,2) <S(x,X,a) +S(y,y,a) +S (2, z, a)
The pair (X, S) is called an S—metric space.

Immediate examples of such S-metric spaces are:

Examplel.2: Let R be the real line. Then S(x, y, z) =[x —y| + |y — 2| + |z — x| for each

X,V, z €R is an S-metric on R. This S-metric is called the usual S-metric on R.

Example 1.3: Let X = R?, d be the ordinary metric on X.

Put S(x, y, z) =d(x, y) + d(y, z) + d (z, x) is an S- metric on X. If we connect the points X, y, z by a line, we have a
triangle and if we choose a point a mediating this triangle then the inequality S(x, y, z) < S(x, X, a) + S(y, ¥, ) + S (z,
z, a) holds. In fact

S(x,y,2) =d(x,y) +d(y, z) + d (z, x)
<d(x,a)+d(a,y)+d(y,a)+d(a,z) +d(z a) +d(a, x)

=S(x,x,2) +8(y,y,2) + S (2,2, 2)

Examplel. 4: Let X =R"and || . || a norm on X, then S(x, y, z) = |[x — z|| + ||y — z|| is an S-metric on X.

Remarkl. S: it is easy to see that every D*-metric is S-metric, but in general the converse is not true, see the following
example.

Examplel. 6: Let X =R"and|| .| a norm on X, then S(x, y, z) = ||y + z — 2x|| + |ly — z|| is an S-metric on X, but it is
not D*-metric because it is not symmetric.

Lemmal. 7: In an S—metric space, we have S(x, X, y) = S(y, y, X).
Proof: By the third condition of S-metric, we get
S(x, X, y) < S(x, X, X) + S(x, X, X) + S(y, y, X) = S(y, ¥, X)...... (D

and similarly
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S(y, ¥, X) < S(Y, ¥, Y S(¥, ¥, ¥) + S(X, X, y) = S(x, X, y).......(2)

Hence, by (1) and (2), we obtain S(x, X, y) = S(y, ¥, X).

Definition1.8: Let (X, S) be an S-metric space. For x €X and r > 0, we define the open ball Bs(x, r) and closed ball
Bs[x, r] with a center x and a radius r as follows

BS(Xn I') = {y S Xa S(Xv Y, y) < I'}
Bs[x,r] = {y € X; S(x,y,y) <r}

For example, Let X =R. Denote S(x,y,z) =|y+z—2x | +|y—2z]| for all x, y, z €R. Therefore Bs(1, 2) = {y €R ; S(y,
y, 1) <2}

= {yeR |y - 1< 1} =(0,2).

Definition 1.9: Let (X, S) be an S—metric space and A c X.

(1)If for every x € A, there is a r > 0 such that Bs(x, r) € A, then the subset A called an
open subset of X

(2) If there is a r > 0 such that S(x, x, y) <r for all X, y € A then A is said to be S—bounded.
(3) A sequence {x,} in X converge to x if and only if S(Xs, Xn, X) — 0 as n —o0. That is for

each € > 0, there exists ng € N such that for all n > no, S(Xn, Xn, X) < € and we denote this by lim x, = x
n —oo

(4) A sequence {x,} in X is called a Cauchy sequence if for each € > 0, there exists no € N such that S(xn, Xn, Xm) < €
for eachm ,n>ny

(5) The S—metric space (X, S) is said to be complete if every Cauchy sequence is convergent sequence.
(6) Let t be the set of all A € X with x € A if and only if there exists r > 0 such that
Bs(x, r)CA. Then 1 is a topology on X (induced by the S-metric S).

(7) If (X, 7) is a compact topological space we shall call (X, S) is a compact S—metric space.

Lemmal. 10([11]): Let (X, S) be an S-metric space. If r > 0 and x € X, then the open ball
Bs(x, 1) is an open subset of X.
Lemmal. 11([11): Let (X, S) be an S-metric space. If the sequence {x,} in X converges to x,

then x is unique.

Lemmal. 12([11]): Let (X, S) be an S-metric space. If the sequence {x,} in X converges to X,

then {x.} is a Cauchy sequence.

Lemmal. 13([11]): Let (X, S) be an S-metric space. If there exists sequences {xn} and {y.} such

111
INTERNATIONAL JOURNAL OF RESEARCH IN SCIENCE AND TECHNOLOGY


http://www.ijrst.com/

International Journal of Research in Science and Technology http://www.ijrst.com

(IJRST) 2023, Vol. No. 13, Issue No. I, Jan-Mar e-ISSN: 2249-0604, p-ISSN: 2454-180X

that lim x, =x and lim y, =y, then lim S(x, x, y,) = S(X, X, y).
n —owo n—oo

n —oo

Lemmal. 14: Let (X, d) be a metric space. Then we have

L=

Sa(x, y, z) =d(x, y) + d(y, z) + d(z, x) for all X, y, z € X is an S-metric on X

xn = X in (X, d) if and only if X, = x in (X, Sq)

{xa} is a Cauchy sequence in (X, d) if and only if {x.} is a Cauchy sequence in (X, Sq)
(X, d) is complete if and only if (X, Sq) is complete

Proof: (1) See [ Example (3), Page 260]

(2) xa = x in (X, d) if and only if d(xn, x) = 0, if and only if Sa(Xn, Xn, X) = 3d(Xn, X) = 0 that is, x, = x in (X, Sq)

(3) {xn}is a Cauchy in (X, d) if and only if d(Xs, Xm) = 0 as n, m = oo, if and only if Sd(Xn, Xn, Xm) = 3d(Xn, Xm)
—0n, m - oo, thatis, {x,} is Cauchy in (X, Sq)

(4) It is a direct consequence of (2) and (3)

Notation: For any selfmap T of X, we denote T(x) by Tx.
If P and Q are selfmaps of a set X, then any z € X such that Pz = Qz = z is called a common fixed point of P and Q.

Two selfmaps P and Q of X are said to be commutative if PQ = QP where PQ is their composition PoQ defined by
(PoQ) x =PQx for all x € X.

Definition 1.15: Suppose P and Q are selfmaps of a S—metric space (X, S) satisfying the condition Q(X) € P(X). Then
for any %o € X, Qxo € Q(X) and hence Qxo € P(X), so that there is a x; € X with Qxo= Px;, since Q(X) € P(X). Now
Qx; € Q(X) and hence there is a x, € X with Qx> € Q(X) € P(X) so that Qx; = Px,. Again Qx; € Q(X) and hence Qx;
€ P(X) with Qx, = Px3. Thus repeating this process to each xo € X, we get a sequence {X,} in X such that Qx,= PxXn+|
for n > 0. We shall call this sequence as an associated sequence of x, relative to the two selfmaps P and Q. It may
be noted that there may be more than one associated sequence for a point xo € X relative to selfmaps P and Q.

Let P and Q are selfmaps of a S-metric space (X, S) such that Q(X) € P(X). For any x, € X, if {X»} is a sequence in
X such that Qx,= Pxn+1 for n >0, then {x,} is called an associated sequence of x relative to the two selfmaps P
and Q.

Definition 1.16: A function @: [0, ) — [0, ) is said to be a contractive modulus, if V(0)=0and O (t) <t
fort>0.

Definition 1.17: A real valued function @ defined on X € R is said to be upper semi continuous, if lim sup @(t,)
n—-oo

<@ (t) for every sequence {t,} in X with t, —> tasn — oo,

Definition 1.18: If P and Q are selfmaps of a S-metric space (X, S) such that for every sequence {x,} in X with
lim Px, = lim Qx,=t, we have

n—-oo n—-oo

lim S(PQxxs, QPxy, QPx,) = 0, then we say that P and Q are compatible.
n—-oo

2. THE MAIN RESULTS:
2.1 Theorem: Let P, Q and T are selfmaps of a S- metric space (X, S) satisfying the conditions
(1) PX)UQX) € T(X)
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(i) S(Px, Qy, Qy) <9 (A(x,y)) forallx,y € X

where O is an upper semi continuous and contractive modulus

and
(11)" A(x, y) = max {S(Tx, Ty, Ty), S(Px, Tx, Tx), S(Qy, Ty, Ty),

~[S(Px, Ty, Ty) + S(Qy. Tx, Tx)]}
(iii) either (P, T) or (Q, T) are compatible pair
and

(iv) T is continuous
Further, if

(1) there is a point Xo € X and an associated sequence {xn} of X relative to the three selfmaps such that the
sequence Pxo, Qxi, Px, Qx3, ....., PXon, QX2nt1, ..... cOnverge to some point z € X,

then P, Q and T have a unique common fixed point z € X.
Before we give the proof of theorem, we establish some lemmas.

2.1. 1 Lemma: Suppose P, Q and T are selfmaps of a S- metric space (X, S) satisfying the conditions (i), (ii), (iv)
and (v) of theorem 2.1. Then for any associated sequence {x,} of Xo relative to P, Q and T we have
(a) lim,_, )\(TXZn, Xon+1 ) =S(z, Tz, Tz) if (P, T) is compatible
and
(b) lim,_, ?\(xm TXon41 ) =S(z, Tz, Tz) if (Q, T) is compatible

Proof: Since by (v), each of the sequences {PXan} and {QxXan+1} converge to z € X and since  PXzn = TXon+1 and
Qxont1 = TXont2 forn >0, we have

(2. 1. 2) Pxon, QX2n+1, TXo2n, TX2n+1 — zasn — co.
Now since T is continuous, we have
(2.1.3) TPxy, — Tz, T?2,—> Tz asn — o
(a) If the pair the pair (P, T) is compatible, we have
(2.1.4) Al_{glo S(PTX2n, TPX2n, TPX20) =0
since Pxon, TX2n — z as n — o by (2. 1. 2).
Now, in view of (2. 1. 3) and (2. 1. 4), we get
(2.1.5) PTx2q » Tz as n— .
Also, from (ii)’, we have
(2. 1. 6) A(Tx2n, X2n+1) = max {S(T?*Xan, TXon+1, TX2n+1), S(PTX2n, T?X2n, T?X2n),

S(Qxan+1, TXan+1, TX2n+1), % [S(PTx2n, TX2n+1, TXonr1) + S(QXan+1, T?X2n, T?X2n)]}
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Letting n to o in (2. 1. 6) and using the continuity of S, (2. 1. 2), (2. 1. 3), (2. 1. 4) and
(2. 1. 5) we get
limy, ., A(TXzn, Xon41 ) = max {S(Tz, z, 2), S(Tz, Tz, Tz), S(z, z, z),
% [S(Tz,z,2)+ S(z Tz, T2)] }
=S(z, Tz, Tz).
(b) If the pair the pair (Q, T) is compatible, we have

2.1.7) rlll—I;Elo S(TQx2n+1, QTx2n+1, QTX2n11) = 0

in view of (2. 1. 2). Also since T is continuous, we have again by (2. 1. 2),

(2. 1. 8) T%411 — Tz and TQxoni1— Tz asn — oo.

Now, in view of (2. 1. 7) and (2. 1. 8), we get

(2.1.9) QTx2n+1 = Tz as n— oo,

Now, from (ii)’, we have

(2. 1. 10) A(x2n, TXon1) = max {S(TxXan, T>X2n+1, T?X20+1), S( PXan, TX2n, TX2n),

S(QTxan+1, T2 Xont1, TXont1), % [S(Px2n, T*Xon+1, T*on+1) + S(QTX2nt1, TX2n, TX20)]}

Now letting n to o in (2. 1. 10) and using the continuity of S, (2. 1. 2), (2. 1. 8) and (2. 1. 9), we get
limy, ., ?\(xm Tx2n+1) = max {S(z, Tz, Tz), S(z, Z, z), S(Tz, Tz, Tz),
~[S(z. Tz, Tz) + S(z Tz, T2)] }

= S(z, Tz, Tz). Hence the lemma.

2. 2 Prof of Theorem 2. 1: In this section we first prove the existence of a common fixed point in the two cases of
the condition (iii) in Theorem 2. 1.

Case(I). First suppose that the pair (P, T) is compatible. Then from (ii), we have
(2.2.1) S(PTx2n, Qx2nt1, QXont1) <O (A(TX2n, X2n+1))

In which on letting n to co using Lemma 2. 1. 1, and the continuity of S, we get
(2.2.2)S(Tz, z,2z) <O (S(Tz, z, z))

and this leads to a contradiction if Tz # z. Therefore Tz = z.
Again, from condition (ii), we have
(2. 2. 3) S(Pz, Qxan+1, Qx2n+1) < O (A(z, Xn+1)). But

Az, Xont1) = max {S(Tz, Txant1, TX2nt1), S( Pz, Tz, Tz),

S(Qsz-], TX2n+1, TX2n+1), % [S(PZ, TX2n+1, TX2n+1) + S(Qsz—l, TZ, TZ)]}
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which on letting n to o and the use of continuity of S imply

AI—I& Az, Xan+1) = S(z, Pz, Pz),
Now letting n to oo in (2. 2. 3), we get by the continuity of S that
(2.2.4) S(Pz, z,z) <O (S(Pz, z, 2))
and this leads to a contradiction if Pz # z. Therefore Pz = z.
Now again, from condition (ii), we have
(2. 2.5) S(Px2n, Qz, Qz) < @ (A(x2n, 2)). But
A(X2n, z) = max {S(Txan, Tz, Tz), S( PXon, TX2n, TX2n), S(Qz, Tz, Tz),

~[S(Pxan, Tz, T2) + $(Qz, Txan, Txan)]}

in which on letting n to c and the continuity of S, we get
r{l_)l’glo A(X2n, Z) = S(z, Qz, Qz), since Pxon — z, TXon— z asn — oo. Then (2. 2. 5) gives
(2.2.6) S(z, Qz, Qz) <D (S(z, Qz, Qz))
and this will give a contradiction if Qz # z. Therefore Qz = z.
Hence z =Pz = Qz = Tz, showing that z is a common fixed point of P, Q and T.
Case (ii): Suppose that the pair (Q, T) is compatible, then from (ii), we have

(2. 2.7) S(Px2n, QTX2n+1, QTX2n+1) <@ (A(X2n, TX2nt1))

in which on letting n to o using Lemma 2. 1. 1, (2. 1. 9), and the continuity of S, we get
(2.2.8) S(z, Tz, Tz) <O (S(z, Tz, Tz))

and this will be a contradiction if Tz # z. Therefore Tz = z.
Again, from condition (ii), we have
(2. 2.9) S(Pz, Qxan+1, Qxant1) < @ (A(z, Xant1)). But
Az, Xont1) = max {S(Tz, Txant1, TXont1), S( Pz, Tz, Tz), S(QXan+1, TX2n+1, TXont1),

% [S(Pz, Txan+1, TXan+1) + S(Qxans1, Tz, T2)]}

so that r113.10 A(Z, Xyn41) =S(z, Pz, Pz),
Therefore, from (2. 2. 9), we have
(2.2.10) S(Pz, z, z) < O (S(Pz, z, 7))
and this leads to a contradiction if Pz # z. Therefore Pz = z.
Again, from condition (ii), we have

(2. 2.11) S(Px2n, Qz, Qz) < @ (A(X2n, Z)). But
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A(X2n, ) = max {S(TXan, Tz, Tz), S( PX2n, TX2n, TX2n), S(Qz, Tz, Tz),
% [S(Pxan, T2, T2) + S(Qz, TXan, TxXan)]}
in which on letting n to © we get lim A(X,,, z) = S(z, Qz, Qz),
n—oo

since Pxop — z, TXxo;n— zasn — w and Pz=z =Tz,

Then (2. 2. 11) gives

(2. 2.12) S(z, Qz, Qz) < D (S(z, Qz, Qz))

and this will give a contradiction if Qz # z. Therefore Qz = z.

Hence z = Pz = Qz = Tz, showing that z is a common fixed point of P, Q and T

Now, we prove the uniqueness of the common fixed point. If possible, let z' be another common fixed point of P, Q
and T. Then from condition (ii), we have

(2.2.13) S(z, 7, ') =S(Pz, Q7Z/, Qz') < ®(A(z, z')). But
Mz, z') =max {S(Tz, TZ', TZ'), S( Pz, Tz, Tz), S(Qz', TZ', TZ"),
2[S(Pz, Tz, T2) + S(Qz’, Tz, T2)]}
=S(z, 7', 2'). Therefore (2. 2. 13) gives

(2.2.14) S(z, 7/, z') < O(S(z, 7, ")) and this will be contradiction if z # z'. Therefore z = z'. Thus z is the unique
common fixed point of P, Q and T.

Thus the Theorem 2. 1 is completely proved.

2.3 A Common Fixed Point Theorem for Three Selfmaps of a Complete S- metric space:
Before we prove the main result of this section, we prove the following lemma:
2.3.1 Lemma: Let (X, S) be a S- metric space and P, Q and T be selfmaps of X such that
(i) P(X) U Q(X) € T(X)
(i) S(Px, Qy, Qy) <c. A(x,y) forallx,y € X
where 0 < ¢ <and A(x, y) is as defined in (ii)’ of Theorem 2. 1
Further, if

(1) (X, S)is complete.
Then for any xo € X and for any of its associated sequence {x,} relative to the three selfmaps, the sequence Pxo, Qxi,
Px2, Qxs....., PXon, QXont1, -.... cOnverges to some z € X.

Proof: Suppose P, Q and T be selfmaps of a S-metric space (X, S) for which the conditions (i) and (ii) hold. Let xo € X and
{xn} be an associated sequence of X relative to three selfmaps. Then, since PxXzn = TXon+1 and QXon+1 = TXons2 forn
> 0. Note that
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A(Xon, Xon+1) = max {S(Txon, TXon+1, TX2n+1), S(PX2n, TXon, TX2n), S(QX2n, TX2n+1, TX20+1),
% [S(PX2n, TXon+1, TXon+1) + S(QTX20+1, TX2n, TX2n)]}
=max {S(TXzn, TXont1, TXon+1), S(TX2n+1, TXon, TX2n), S(TX2nt2, TXont1, TX2nt1),

% [S(Tx2n+1, TX2n+1, TX2n+1) + S(Tx2n+2, TX2n, TX2n)]} =max {S(TxXan, TX2n+1,

Tx2n+1), S(Tx2n+2, TX2n+1, TX2n+1), % S(Txan+2, TXon, TX2n)}

Since % S(TXan+2, TX2n, TX2n) :g [S(TXan+2, TXant1, TXane1) + S(TXane1, TXon, TXon)]}

< max {S(TXan+2, TXont1, TX2n41), S(TX2n+1, TX2n, TX2n),

A(X2n, Xon+1) < max { S(TXon, TXon+1,TX2n+1), S(TX2n+1, TX2nt2, TX2n+2)}
Now by (ii)

S(Txon+1, TX2n+2, TX2n2) = S(PX2n, QXont1, qX2nr1) < €. A(X2n, X20+1)

<c. max { S(Txan, TX2n+1, TXont1), S(TXon+1, TXont2, TX2n12)}-
Since 0 <c¢ < 1, it follows from that the
max { S(Txan, TXont1, TX2n41), S(TXon+1, TXont2, TXon42)} = S(TX2n, TXont1, TX2n41)
Therefore  S(TXont1, TXon+2, TXon+2) < €. S(TX2n, TXon+1, TX2nt1) ... (A)
Similarly, we can prove
S(Tx2n, TX20+1, TX20+1) < €. S(TX2n, TX2n-1, TX20-1) «evenee (B)

From (A) and (B), we get
S(TXan+1, TX2nt2, TXan+2) <€ S(TXan, TXon-1, TXon-1)

<c¢* S(Txan-1, TX2n:3, TX2n:3)

< ¢ S(TXz,TXo,TXo) —0

Since ¢*"— 0 asn — oo (because ¢ < 1), the sequence {Tx,} and hence Pxo, Qx1, Px2, Qxs......, PXan, QXone1.. ...
is a Cauchy sequence in the complete space (X, S) and therefore converges to a point say z € X, proving lemma.

2.3.2 Remark: The converse of lemma is not true. That is, suppose P, Q and T are selfmaps of a S-metric space (X,
S) satisfying condition (i) and (ii) of Lemma 2.3.1. Even, if for each x¢ € X and for each associated sequence {xn}
of xg relative to P, Q and T, the sequence Pxo, Qxi, Px2, Qx3, ....., PXon, QXont1, ..... converges in X, then (X, S) need
not complete.

2. 3.3 Theorem: Suppose (X, S) is a S-metric space satisfying conditions (i) to (iv) of Theorem 2. 1. Further, if (v)’
(X, S) is complete

then P, Q and T have a unique common fixed point z € X.
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Proof: In view of Lemma 2.3.1 the condition (v) of Theorem 2.1 holds as view of (v)'.
Hence the Theorem follows from Theorem 2.1.
2.3.4 Corollary ([9]): Let P, Q and T be selfmaps of a metric space (X, d) such that
0 POYUQX) S TX)
(i1) d(Px, Qy) < cAo(x,y)) forallx,y € X,

where
(11)" Ao(x, y) = max {d(Tx, Ty), d(Px, Tx), d(Qy, Ty), %[d(Px, Ty) +d(Qy, Sx)]}and 0 <c <1
(iii) T is continuous,

and
(iv)  PT=TPand QT =TQ

Further, if
v) X is complete

Then P, Q and T have a unique common fixed point in z € X.

Proof: Given (X, d) is a metric space satisfying condition (i) to (v) of the corollary. If Si(x,y, z) = max {d(x,
y), d(y, z), d (z, X), then (X, Si) is a S-metric space and Si(X, y, x) = d(X, y). Therefore condition (ii) can be written as
Si1(Px, Qy, Qy) <c. A(x, y) for all x, y € X where A(x, y) =max {Si(Tx, Ty, Ty), Si(Px, Tx, Tx), Si(Qy, Jy, Jy),

~{Si(Px, Ty, Ty) + $(Qy, Tx, Tx)]}

which is the same as condition (ii) of Theorem 2.3.3. Also since (X, d) is complete, we have (X, S)) is complete by
Corollary1.14.

Now, P, Q and T are selfmaps on (X, S;) satisfying conditions of Theorem 2.3.3 and hence the corollary
follows.
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