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ABSTRACT 

Suppose (X, S) is a S- metric space and P, Q and T are selfmaps of X. If these three maps and the space X satisfy 

certain conditions, we shall prove that they have a unique common fixed point in this paper. As a consequence we 

deduce a common fixed point theorem for three selfmaps of a complete S- metric space. Further, we show that a 

common fixed point theorem for three selfmaps of a metric space proved by S. L. Singh and S. P. Singh ([9]) follows 

as a particular case of the theorem. 

Mathematics Subject Classification: 47H10, 54H25. 

Key Words: S-metric space; Compatible; Fixed point theorem 

1. INTRODUCTION AND PRELIMINARIES 

 

      It is well known that in applied mathematics, many of the most important nonlinear problems can be reduced to 

solving a given equation. This equation can be reformulated as finding the fixed point or zero of an operator, 

highlighting the importance of fixed point theory as a key part of nonlinear functional analysis. Fixed point theory 

has found wide applications in various disciplines, including nonlinear partial differential equations, nonlinear integral 

equations, control theory, optimization theory, economics, and engineering. 

 

        On the other hand, some authors are interested and have tried to give generalizations of metric spaces in different 

ways. In 1963 Gahler [6] gave the concepts of 2- metric space further in 1992 Dhage [2] modified the concept of 2- 

metric space and introduced the concepts of D-metric space also proved fixed point theorems for selfmaps of such 

spaces. Later researchers have made a significant contribution to fixed point of D- metric spaces in [1], [3], and [4]. 

Unfortunately almost all the fixed point theorems proved on D-metric spaces are not valid in view of papers [6], [7] 

and [8].  Sedghi et al. [10] modified the concepts of D- metric space and introduced the concepts of D*- metric space 

also proved a common fixed point theorems in D*- metric space. 

       Recently, Sedghi et al [11] introduced the concept of S- metric space which is different from other space and 

proved fixed point theorems in S-metric space. They also gives some examples of S- metric spaces which shows that 

S- metric space is different from other spaces. In fact they give following concepts of S- metric space. 

 

 

1 How to cite the article: Upender S.; Common Fixed Point Theorems for Three Selfmaps of a Complete S-Metric Space; International Journal 

of Research in Science and Technology, Jan-Mar 2023, Vol 13, Issue 1, 109-119, DOI: http://doi.org/10.37648/ijrst.v13i01.013 
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Definition 1.1([11]): Let X be a non-empty set. An S-metric space on X is a function              

S: X3 → [0, ∞) that satisfies the following conditions, for each x, y, z, a ∈ X 

(i) S(x, y, z) ≥ 0  

(ii) S(x, y, z) = 0 if and only if x = y = z. 

(iii) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S (z, z, a)    

The pair (X, S) is called an S–metric space. 

Immediate examples of such S-metric spaces are: 

 

Example1.2: Let ℝ be the real line. Then S(x, y, z) = |x – y| + |y – z| + |z – x| for each           

  x, y, z ∈ℝ is an S-metric on ℝ. This S-metric is called the usual S-metric on ℝ.  

 

Example 1.3:  Let X = ℝ2, d be the ordinary metric on X.  

Put S(x, y, z) = d(x, y) + d(y, z) + d (z, x) is an S- metric on X. If we connect the points x, y, z by a line, we have a 

triangle and if we choose a point a mediating this triangle then the inequality S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S (z, 

z, a) holds. In fact   

S(x, y, z) = d(x, y) + d(y, z) + d (z, x) 

                ≤ d(x, a) + d(a, y) + d (y, a) + d(a, z) + d(z, a) + d (a, x) 

                = S(x, x, a) + S(y, y, a) + S (z, z, a) 

 

Example1. 4: Let X = ℝn and || . || a norm on X, then S(x, y, z) = ||x – z|| + ||y – z|| is an S-metric on X.  

 

Remark1. 5: it is easy to see that every D*-metric is S-metric, but in general the converse is not true, see the following 

example. 

 

 Example1. 6:  Let X = ℝn and || . || a norm on X, then S(x, y, z) = ||y + z – 2x|| + ||y – z|| is an S-metric on X, but it is 

not D*-metric because it is not symmetric. 

 

Lemma1. 7: In an S–metric space, we have S(x, x, y) = S(y, y, x). 

Proof: By the third condition of S-metric, we get 

  S(x, x, y) ≤ S(x, x, x) + S(x, x, x) + S(y, y, x) = S(y, y, x)…… (1) 

  and similarly 
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S(y, y, x) ≤  S( y, y, y)+ S(y, y, y) + S(x, x, y) = S(x, x, y)……(2) 

Hence, by (1) and (2), we obtain S(x, x, y) = S(y, y, x). 

 

Definition1.8: Let (X, S) be an S-metric space. For x ∈X and r > 0, we define the open ball BS(x, r) and closed ball 

BS[x, r] with a center x and a radius r as follows                                     

                        BS(x, r) = {y ∈ X; S(x, y, y) < r}  

                        BS[x, r] = {y ∈ X; S(x, y, y) ≤ r} 

For example, Let X =ℝ. Denote S(x, y, z) = | y + z – 2x | + | y – z | for all x, y, z ∈ℝ. Therefore BS(1, 2) = {y ∈ℝ ; S(y, 

y, 1) < 2} 

                  = {y∈ℝ ; | y – 1|< 1} = (0, 2). 

 

Definition 1.9: Let (X, S) be an S–metric space and A ⊂ X.  

 (1)If for every x ∈ A, there is a r > 0 such that BS(x, r) ⊂ A, then the subset A called an     

 open subset of X 

(2) If there is a r > 0 such that S(x, x, y) < r for all x, y ∈ A then A is said to be S–bounded. 

             (3)  A sequence {xn} in X converge to x if and only if S(xn, xn, x) → 0 as n →∞. That is for        

            each ∈ > 0, there exists n0 ∈ ℕ such that for all n ≥ n0, S(xn, xn, x) < ∈ and we denote this by lim
n →∞

xn = x  

             (4) A sequence {xn} in X is called a Cauchy sequence if for each ∈ > 0, there exists n0 ∈ ℕ such that S(xn, xn, xm) < ∈ 

for each m , n ≥ n0   

(5) The S–metric space (X, S) is said to be complete if every Cauchy sequence is convergent sequence. 

           (6) Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0 such that             

            BS(x, r)⊂A. Then τ is a topology on X (induced by the S-metric S).                

          (7) If (X, τ) is a compact topological space we shall call (X, S) is a compact S–metric space. 

 

Lemma1. 10([11]): Let (X, S) be an S-metric space. If r > 0 and x ∈ X, then the open ball            

                                BS(x, r) is an open subset of X. 

  Lemma1. 11([11): Let (X, S) be an S-metric space. If the sequence {xn} in X converges to x,                  

                                 then x is unique. 

Lemma1. 12([11]): Let (X, S) be an S-metric space. If the sequence {xn} in X converges to x,       

                                then {xn} is a Cauchy sequence.  

Lemma1. 13([11]): Let (X, S) be an S-metric space. If there exists sequences {xn} and {yn} such      
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                          that lim
n →∞

xn = x and lim
n →∞

yn = y, then  lim
n→∞

S(xn,xn,yn) = S(x, x, y). 

Lemma1. 14: Let (X, d) be a metric space. Then we have  

1. Sd(x, y, z) = d(x, y) + d(y, z) + d(z, x) for all x, y, z ∈ X is an S-metric on X 

2. xn → x in (X, d) if and only if Xn → x in (X, Sd) 

3. {xn} is a Cauchy sequence in (X, d) if and only if {xn} is a Cauchy sequence in (X, Sd) 

4. (X, d) is complete if and only if (X, Sd) is complete                                                             

 

Proof: (1) See [ Example (3), Page 260] 

(2) xn → x in (X, d) if and only if d(xn, x) → 0, if and only if Sd(xn, xn, x) = 3d(xn, x) → 0 that is, xn → x in (X, Sd) 

(3)  {xn}is a Cauchy in  (X, d) if and only if d(xn, xm) → 0 as n, m → ∞, if and only if       Sd(xn, xn, xm) = 3d(xn, xm) 

→ 0 n, m → ∞,  that is, {xn} is Cauchy in (X, Sd) 

(4) It is a direct consequence of (2) and (3) 

 

Notation: For any selfmap T of X, we denote T(x) by Tx.  

If P and Q are selfmaps of a set X, then any z ∈ X such that Pz = Qz = z is called a common fixed point of P and Q. 

Two selfmaps P and Q of X are said to be commutative if PQ = QP where PQ is their composition PoQ defined by 

(PoQ) x = PQx for all x ∈ X. 

 

             Definition 1.15: Suppose P and Q are selfmaps of a S–metric space (X, S) satisfying the condition Q(X) ⊆ P(X). Then 

for any x0 ∈ X, Qx0 ∈ Q(X) and hence Qx0 ∈ P(X), so that there is a x1 ∈ X with Qx0 = Px1, since Q(X) ⊆ P(X). Now 

Qx1 ∈ Q(X) and hence there is a x2 ∈ X with Qx2 ∈ Q(X) ⊆ P(X) so that Qx1 = Px2.  Again Qx2 ∈ Q(X) and hence Qx2 

∈ P(X) with Qx2 = Px3. Thus repeating this process to each x0 ∈ X, we get a sequence {xn} in X such that Qxn = Pxn+1 

for n ≥ 0. We shall call this sequence as an associated sequence of x0 relative to the two selfmaps P and Q. It may 

be noted that there may be more than one associated sequence for a point x0 ∈ X relative to selfmaps P and Q. 

    Let P and Q are selfmaps of a S-metric space (X, S) such that Q(X) ⊆ P(X). For any xo ϵ X, if {xn} is a sequence in 

X such that  Qxn = Pxn+1 for  n ≥ 0, then {xn} is called an associated sequence of x0 relative to the two selfmaps P 

and Q.  

Definition 1.16: A function Ø: [0, ∞) → [0, ∞) is said to be a contractive modulus, if            Ø (0) = 0 and Ø (t) < t 

for t > 0. 

Definition 1.17: A real valued function Ø defined on X ⊆ ℝ is said to be upper semi continuous, if lim
𝑛→∞

sup Ø(𝑡n) 

≤ Ø (t) for every sequence {tn} in X with tn → t as n → ∞. 

Definition 1.18: If P and Q are selfmaps of a S-metric space (X, S) such that for every sequence {xn} in X with 

lim
𝑛→∞

𝑃𝑥n = lim
𝑛→∞

𝑄𝑥n = t, we have  

lim
𝑛→∞

𝑆(PQxn, QPxn, QPxn) = 0, then we say that P and Q are compatible. 

 

 

2. THE MAIN RESULTS: 

2. 1 Theorem: Let P, Q and T are selfmaps of a S- metric space (X, S) satisfying the conditions 

(i)    P(X) ∪ Q(X) ⊆ T(X)  
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(ii)    S(Px, Qy, Qy) ≤ Ø (𝜆(x, y)) for all x, y ∈ X 

   where Ø is an upper semi continuous and contractive modulus  

    and 

(ii)ʹ 𝜆(x, y) = max {S(Tx, Ty, Ty), S(Px, Tx, Tx), S(Qy, Ty, Ty),                                  

                                                       
1

2
 [S(Px, Ty, Ty) + S(Qy, Tx, Tx)]}  

(iii) either (P, T) or (Q, T)  are compatible pair 

and 

(iv)  T is continuous 

       Further, if 

(i) there is a point x0 ∈ X and an  associated sequence {xn} of x0  relative to the three selfmaps  such that the 

sequence Px0, Qx1, Px2, Qx3, ….., Px2n, Qx2n+1, ….. converge to some point z ∈ X,  

then P, Q and T have a unique common fixed point z ∈ X. 

Before we give the proof of theorem, we establish some lemmas. 

2.1. 1 Lemma: Suppose P, Q and T are selfmaps of a S- metric space (X, S) satisfying the conditions (i), (ii), (iv) 

and (v) of theorem 2.1. Then for any associated sequence {xn} of x0  relative to P, Q and T we have   

(a) limn→∞ λ(Tx2n, x2n+1 )  = S(z, Tz, Tz) if (P, T) is compatible 

and 

(b) limn→∞ λ(x2n, Tx2n+1 )   = S(z, Tz, Tz) if (Q, T) is compatible 

Proof: Since by (v), each of the sequences {Px2n} and {Qx2n+1} converge to z ∈ X and since    Px2n = Tx2n+1 and  

Qx2n+1 = Tx2n+2  for n ≥ 0,  we have 

(2. 1. 2) Px2n, Qx2n+1, Tx2n, Tx2n+1 → z as n → ∞. 

 Now since T is continuous, we have 

(2.1.3)  TPx2n → Tz, T2x2n→ Tz as n → ∞ 

  (a) If the pair the pair (P, T) is compatible, we have 

(2.1.4) lim
n→∞

S(PTx2n, TPx2n, TPx2n) = 0 

 since Px2n, Tx2n → z as n → ∞ by (2. 1. 2). 

Now, in view of (2. 1. 3) and (2. 1. 4), we get  

(2.1.5)  PTx2n → Tz as n→ ∞. 

Also, from (ii)ʹ, we have  

(2. 1. 6) 𝜆(Tx2n, x2n+1) = max {S(T2x2n, Tx2n+1, Tx2n+1), S(PTx2n, T2x2n, T2x2n),                                                                    

              S(Qx2n+1, Tx2n+1, Tx2n+1), 
1

2
 [S(PTx2n, Tx2n+1, Tx2n+1) + S(Qx2n+1, T2x2n, T2x2n)]}  
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Letting n to ∞ in (2. 1. 6) and using the continuity of S, (2. 1. 2), (2. 1. 3), (2. 1. 4)  and           

 (2. 1. 5) we get 

 limn→∞ λ(Tx2n, x2n+1 )  = max {S(Tz, z, z), S(Tz, Tz, Tz), S(z, z, z),                                

                                                                  
1

2
 [S(Tz, z, z ) + S( z, Tz, Tz)] } 

                                         = S(z, Tz, Tz).  

(b) If the pair the pair (Q, T) is compatible, we have 

(2. 1. 7) lim
n→∞

S(TQx2n+1, QTx2n+1, QTx2n+1) = 0 

in view of (2. 1. 2). Also since T is continuous, we have again by (2. 1. 2),  

(2. 1. 8) T2x2n+1 → Tz  and  TQx2n+1→ Tz as n → ∞. 

Now,  in view of (2. 1. 7) and (2. 1. 8), we get  

(2. 1. 9) QTx2n+1 → Tz  as n→ ∞. 

Now, from (ii)ʹ, we have  

(2. 1. 10) 𝜆(x2n, Tx2n+1) = max {S(Tx2n, T2x2n+1, T2x2n+1), S( Px2n,  Tx2n,  Tx2n),                                                                           

         S(QTx2n+1, T2x2n+1, T2x2n+1), 
1

2
 [S(Px2n, T2x2n+1, T2x2n+1) + S(QTx2n+1, Tx2n, Tx2n)]} 

Now letting n to ∞ in (2. 1. 10) and using the continuity of S, (2. 1. 2), (2. 1. 8) and (2. 1. 9), we get 

limn→∞ λ(x2n, Tx2n+1 )  = max {S(z, Tz, Tz), S(z, z, z), S(Tz, Tz, Tz),                                                                 

                                                                            
1

2
 [S(z, Tz, Tz ) + S( z, Tz, Tz)] } 

                                                    = S(z, Tz, Tz). Hence the lemma. 

 

2. 2 Prof of Theorem 2. 1: In this section we first prove the existence of a common fixed point in the two cases of 

the condition (iii) in Theorem 2. 1. 

Case(I). First suppose that the pair (P, T) is compatible. Then from (ii), we have   

 (2. 2. 1) S(PTx2n, Qx2n+1, Qx2n+1) ≤ Ø (𝜆(Tx2n, x2n+1)) 

 In which on letting n to ∞ using Lemma 2. 1. 1, and  the continuity of S, we get  

 (2. 2. 2) S(Tz, z, z) ≤ Ø (S(Tz, z, z)) 

  and this leads to a contradiction if Tz ≠ z. Therefore Tz = z. 

Again, from condition (ii), we have  

(2. 2. 3) S(Pz, Qx2n+1, Qx2n+1) ≤ Ø (𝜆(z, x2n+1)). But  

𝜆(z, x2n+1) = max {S(Tz, Tx2n+1, Tx2n+1), S( Pz, Tz,  Tz),                                                                       

                             S(Qx2n+1, Tx2n+1, Tx2n+1), 
1

2
 [S(Pz, Tx2n+1, Tx2n+1) + S(Qx2n+1, Tz, Tz)]} 
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   which on letting n to ∞ and the use of  continuity of S imply   

 lim
n→∞

λ(z, x2n+1) = S(z, Pz, Pz), 

Now letting n to ∞ in (2. 2. 3), we get by the continuity of S that 

(2. 2. 4) S(Pz, z, z) ≤ Ø (S(Pz, z, z)) 

and this leads to a contradiction if Pz ≠ z. Therefore Pz = z. 

Now again, from condition (ii), we have  

(2. 2. 5) S(Px2n, Qz, Qz) ≤  Ø (𝜆(x2n, z)). But  

𝜆(x2n, z) = max {S(Tx2n, Tz, Tz), S( Px2n, Tx2n,  Tx2n), S(Qz, Tz, Tz),                                                             

                                                                
1

2
 [S(Px2n, Tz, Tz) + S(Qz, Tx2n, Tx2n)]} 

  in which on letting n to ∞ and the continuity of S, we get    

lim
n→∞

λ(x2n, z) = S(z, Qz, Qz), since Px2n → z, Tx2n→ z as n → ∞. Then  (2. 2. 5) gives 

(2. 2. 6) S(z, Qz, Qz) ≤ Ø (S(z, Qz, Qz)) 

and this will give a contradiction if Qz ≠ z. Therefore Qz = z. 

Hence z = Pz = Qz  = Tz, showing that z is a common fixed point of P, Q and T. 

Case (ii): Suppose that the pair (Q, T) is compatible, then from (ii), we have   

 (2. 2. 7) S(Px2n, QTx2n+1, QTx2n+1) ≤ Ø (𝜆(x2n, Tx2n+1)) 

  in which on letting n to ∞ using Lemma 2. 1. 1, (2. 1. 9), and the continuity of S, we get  

 (2. 2. 8) S(z, Tz, Tz) ≤ Ø (S(z, Tz, Tz)) 

  and this will be a contradiction if Tz ≠ z. Therefore Tz = z. 

Again, from condition (ii), we have  

(2. 2. 9) S(Pz, Qx2n+1, Qx2n+1) ≤  Ø (𝜆(z, x2n+1)). But  

𝜆(z, x2n+1) = max {S(Tz, Tx2n+1, Tx2n+1), S( Pz, Tz,  Tz), S(Qx2n+1, Tx2n+1, Tx2n+1),                                                                       

                                                                         
1

2
 [S(Pz, Tx2n+1, Tx2n+1) + S(Qx2n+1, Tz, Tz)]}   

  so that lim
n→∞

λ(z, x2n+1) = S(z, Pz, Pz), 

Therefore, from (2. 2. 9), we have  

(2. 2. 10) S(Pz, z, z) ≤ Ø (S(Pz, z, z)) 

and this leads to a contradiction if Pz ≠ z. Therefore Pz = z. 

Again, from condition (ii), we have  

(2. 2. 11) S(Px2n, Qz, Qz) ≤ Ø (𝜆(x2n, z)). But  
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𝜆(x2n, z) = max {S(Tx2n, Tz, Tz), S( Px2n, Tx2n,  Tx2n), S(Qz, Tz, Tz),                                                                          

                                                          
1

2
 [S(Px2n, Tz, Tz) + S(Qz, Tx2n, Tx2n)]} 

  in which on letting n to ∞ we get lim
n→∞

λ(x2n, z) = S(z, Qz, Qz),  

since Px2n → z, Tx2n→ z as n → ∞ and Pz =z = Tz, 

Then (2. 2. 11) gives 

(2. 2. 12) S(z, Qz, Qz) ≤ Ø (S(z, Qz, Qz)) 

and this will give a contradiction if Qz ≠ z. Therefore Qz = z. 

Hence z = Pz = Qz = Tz, showing that z is a common fixed point of P, Q and T 

Now, we prove the uniqueness of the common fixed point. If possible, let zʹ be another common fixed point of P, Q 

and T. Then from condition (ii), we have 

(2. 2. 13) S(z, zʹ, zʹ) =S(Pz, Qzʹ, Qzʹ) ≤ Φ(𝜆(z, zʹ)). But  

𝜆(z, zʹ) = max {S(Tz, Tzʹ, Tzʹ), S( Pz, Tz,  Tz), S(Qzʹ, Tzʹ, Tzʹ),                                                                       

                                                      
1

2
 [S(Pz, Tzʹ, Tzʹ) + S(Qzʹ, Tz, Tz)]} 

              = S(z, zʹ, zʹ). Therefore (2. 2. 13) gives   

(2. 2. 14) S(z, zʹ, zʹ) ≤ Φ(S(z, zʹ, zʹ)) and this will be contradiction if z ≠ zʹ. Therefore z = zʹ. Thus z is the unique 

common fixed point of P, Q and T. 

  Thus the Theorem 2. 1 is completely proved. 

 

2.3 A Common Fixed Point Theorem for Three Selfmaps of a Complete S- metric space:  

Before we prove the main result of this section, we prove the following lemma: 

2.3.1 Lemma: Let (X, S) be a S- metric space and P, Q and T be selfmaps of X such that  

(i)  P(X) ∪ Q(X) ⊆ T(X)    

(ii)   S(Px, Qy, Qy) ≤ c. 𝜆(x, y) for all x, y ∈ X 

       where 0 ≤ c ˂ and 𝜆(x, y) is as defined in (ii)ʹ of Theorem 2. 1 

       Further, if 

(i)  (X, S) is complete. 

Then for any x0 ∈ X and for any of its associated sequence {xn} relative to the three selfmaps, the sequence Px0, Qx1, 

Px2, Qx3….., Px2n, Qx2n+1, ….. converges to some z ∈ X.  

Proof: Suppose P, Q and T be selfmaps of a S-metric space (X, S) for which the conditions (i) and (ii) hold. Let x0 ∈ X and 

{xn} be an associated sequence of x0 relative to three selfmaps. Then, since   Px2n = Tx2n+1 and Qx2n+1 = Tx2n+2 for n 

≥ 0. Note that  
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𝜆(x2n, x2n+1) = max {S(Tx2n, Tx2n+1, Tx2n+1), S(Px2n, Tx2n, Tx2n), S(Qx2n, Tx2n+1, Tx2n+1),        

                                                      
1

2
 [S(Px2n, Tx2n+1, Tx2n+1) + S(QTx2n+1, Tx2n, Tx2n)]}                                       

               = max {S(Tx2n, Tx2n+1, Tx2n+1), S(Tx2n+1, Tx2n, Tx2n), S(Tx2n+2, Tx2n+1, Tx2n+1),  

                                                     
1

2
 [S(Tx2n+1, Tx2n+1, Tx2n+1) + S(Tx2n+2, Tx2n, Tx2n)]}                 = max {S(Tx2n, Tx2n+1, 

Tx2n+1), S(Tx2n+2, Tx2n+1, Tx2n+1), 
1

2
 S(Tx2n+2, Tx2n, Tx2n)} 

Since  
1

2
 S(Tx2n+2, Tx2n, Tx2n) = 

1

2
 [S(Tx2n+2, Tx2n+1, Tx2n+1) + S(Tx2n+1, Tx2n, Tx2n)]} 

                                                 ≤  max {S(Tx2n+2, Tx2n+1, Tx2n+1), S(Tx2n+1, Tx2n, Tx2n), 

𝜆(x2n, x2n+1) ≤ max { S(Tx2n, Tx2n+1,Tx2n+1), S(Tx2n+1, Tx2n+2, Tx2n+2)} 

Now by (ii)     

   S(Tx2n+1, Tx2n+2, Tx2n+2) = S(Px2n, Qx2n+1, qx2n+1)   ≤ c. 𝜆(x2n, x2n+1)    

                                            ≤ c.  max { S(Tx2n, Tx2n+1, Tx2n+1),  S(Tx2n+1, Tx2n+2, Tx2n+2)}. 

Since 0 ≤ c < 1, it follows from that the   

max { S(Tx2n, Tx2n+1, Tx2n+1),  S(Tx2n+1, Tx2n+2, Tx2n+2)} = S(Tx2n, Tx2n+1, Tx2n+1) 

Therefore      S(Tx2n+1, Tx2n+2, Tx2n+2) ≤ c. S(Tx2n, Tx2n+1, Tx2n+1) …….. (A) 

Similarly, we can prove 

                     S(Tx2n, Tx2n+1, Tx2n+1) ≤ c. S(Tx2n, Tx2n-1, Tx2n-1) …….. (B) 

From (A) and (B), we get 

S(Tx2n+1, Tx2n+2, Tx2n+2) ≤ c2   S(Tx2n, Tx2n-1, Tx2n-1) 

                                        ≤ c4   S(Tx2n-1, Tx2n-3, Tx2n-3) 

- - - - - - - - - - - - - - - - - - - -  

- - - - - - - - - - - - - - - - - - - -  

                                        ≤ c2n   S(Tx2,Tx0,Tx0) → 0 

 Since c2n → 0 as n → ∞ (because c < 1), the sequence {Txn} and hence Px0, Qx1, Px2, Qx3,….., Px2n, Qx2n+1….. 

is a Cauchy sequence in the complete space (X, S) and therefore converges to a point say z ∈ X, proving lemma. 

2.3.2 Remark: The converse of lemma is not true. That is, suppose P, Q and T are selfmaps of a S-metric space (X, 

S) satisfying condition (i) and (ii) of Lemma 2.3.1. Even,  if for each  x0 ∈ X and for each associated sequence  {xn} 

of x0 relative to P, Q and T, the sequence Px0, Qx1, Px2, Qx3, ….., Px2n, Qx2n+1, …..   converges in X, then (X, S) need 

not complete. 

 

2. 3. 3 Theorem: Suppose (X, S) is a S-metric space  satisfying conditions (i) to (iv) of Theorem 2. 1.  Further, if (v)ʹ 

(X, S) is complete 

 then P, Q and T have a unique common fixed point z ∈ X.    
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Proof:  In view of Lemma 2.3.1 the condition (v) of Theorem 2.1 holds as view of (v)'. 

Hence the Theorem follows from Theorem 2.1. 

2.3.4 Corollary ([9]):  Let P, Q and T be selfmaps of a metric space (X, d) such that  

(i)         P(X) ∪ Q(X) ⊆ T(X)   

(ii)        d(Px, Qy)  ≤  c 𝜆0 (x, y)) for all x, y ∈ X, 

             where  

(ii)'   𝜆0(x, y) = max {d(Tx, Ty), d(Px, Tx), d(Qy, Ty), 
1

2
[d(Px, Ty) + d(Qy, Sx)]}and 0 ≤ c < 1  

(iii)      T is continuous, 

              and 

(iv)       PT = TP and QT = TQ 

             Further, if 

(v)        X is complete 

          Then P, Q and T have a unique common fixed point in z ∈ X. 

Proof:  Given (X, d) is a metric space satisfying condition (i) to (v) of the corollary. If         S1(x, y, z) = max {d(x, 

y), d(y, z), d (z, x), then (X, S1) is a S-metric space and S1(x, y, x) = d(x, y). Therefore condition (ii) can be written as 

S1(Px, Qy, Qy) ≤ c. 𝜆(x, y) for all x, y ∈ X where  𝜆(x, y) = max {S1(Tx, Ty, Ty), S1(Px, Tx, Tx), S1(Qy, Jy, Jy),    

                                                       
1

2
[S1(Px, Ty, Ty) + S1(Qy, Tx, Tx)]} 

which is the same as condition (ii) of Theorem 2.3.3. Also since (X, d) is complete, we have (X, S1) is complete by 

Corollary1.14. 

  Now, P, Q and T are selfmaps on (X, S1) satisfying conditions of Theorem 2.3.3 and hence the corollary 

follows. 
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